Front Shock length calculation

Point A - the lower arm connects to the spindle will be the fixed reference. The height of A is set by the tire radius and the fixed dimension from the tire center down to A. That distance is assumed to be 5 "'. The OEM tire diameter is $25.2^{\prime \prime}$
Point B - the lower arm connects to the body is the car's ride height. Using the difference between B and A with the length of the lower arm, the angle of the lower arm is calculated.
Point C - the shock connects to the body. Its position is calculated from B and the fixed distance of 117.5/306 set by the body.

Point D - the shock connects to the lower arm. Its position can be calculated using the angle of the lower arm.
The shock length is calculated from the D to C positions.
The excel spread sheet

tire	A	B	Angle	B X	BY	CX	CY	D X	DY	L
25.2	$\begin{aligned} & \text { A15 } \\ & \text { /2-5 } \end{aligned}$	$\begin{aligned} & 13 \\ & - \\ & 7.6 \\ & - \\ & 0.5 \end{aligned}$	DEGREE S(ATAN((B15C15)/12 .7))	B15- 12.7*(S) N((B15- C15)/12 .7))	$\begin{aligned} & 12.7^{*}(\mathrm{C} \\ & \text { OS((B15 } \\ & - \\ & \mathrm{C} 15) / 12 \\ & .7)) \end{aligned}$	E15+12	F15-4.6	$\begin{aligned} & \text { B15- } \\ & 2.6^{*}(\text { SIN } \\ & ((\text { B15- } \\ & \text { C15)/12 } \\ & .7)) \end{aligned}$	$\begin{aligned} & 2.6^{*}(\mathrm{CO} \\ & \mathrm{S}(\text { (B15- } \\ & \mathrm{C} 15) / 12 \\ & .7)) \end{aligned}$	SQRT(IG 15- I15)^2+(H15- J15) ^2)

The factory normal ride height was a shock length between 13.5 to 14.0 ". The ride height on this chart is measured from the lower arm to body bolt (point B)

Factory shock minimum length was $11.6^{\prime \prime}$ with a maximum length of 17 "

